Spring 2016 Math 245 Mini Midterm 2 Solutions

1. Consider $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x \lfloor x \rfloor$. Prove or disprove that f is injective. False. We have $f(0) = 0 \lfloor 0 \rfloor = 0 = \frac{1}{2} \lfloor \frac{1}{2} \rfloor = f(\frac{1}{2})$, but $0 \neq \frac{1}{2}$.

2. Let A, B, C be sets, with $B \subseteq C$. Prove that $(A \times B) \subseteq (A \times C)$. Let $x \in A \times B$ be arbitrary. There must be some $a \in A, b \in B$ such that x = (a, b). Since $B \subseteq C$, in fact $b \in C$. Hence $x = (a, b) \in A \times C$. Therefore $(A \times B) \subseteq (A \times C)$.

- 3. Carefully define each of the following terms:
 - a. relation

A relation from set A to set B is a subset of $A \times B$.

b. symmetric (relation)

A relation R is symmetric if whenever $(a, b) \in R$, we must have $(b, a) \in R$.

c. equivalence relation

A relation is an *equivalence relation* if it is reflexive, symmetric, and transitive.

d. partial order

A relation is a *partial order* if it is reflexive, antisymmetric, and transitive.

e. surjective

A function $f : A \to B$ is surjective if for every $b \in B$ there is at least one $a \in A$ such that f(a) = b.

4. Consider the relation R on \mathbb{Z} given by $aRb \Leftrightarrow |a-b| \leq 1$. Prove or disprove that R is transitive.

False. We have 3R2 since $|3-2| \le 1$. We have 2R1 since $|2-1| \le 1$. But 3R1 since |3-1| > 1.

5. Find the general solution to the recurrence relation $a_n = -a_{n-1} + 6a_{n-2}$. This relation has characteristic equation $r^2 = -r+6$, which rearranges as $r^2+r-6=0$, and factors as (r+3)(r-2) = 0. There are two roots, -3 and 2, so the general solution is $a_n = A(-3)^n + B(2)^n$.