Spring 2016 Math 245 Mini Midterm 2 Solutions

1. Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x\lfloor x\rfloor$. Prove or disprove that f is injective.

False. We have $f(0)=0\lfloor 0\rfloor=0=\frac{1}{2}\left\lfloor\frac{1}{2}\right\rfloor=f\left(\frac{1}{2}\right)$, but $0 \neq \frac{1}{2}$.
2. Let A, B, C be sets, with $B \subseteq C$. Prove that $(A \times B) \subseteq(A \times C)$.

Let $x \in A \times B$ be arbitrary. There must be some $a \in A, b \in B$ such that $x=(a, b)$. Since $B \subseteq C$, in fact $b \in C$. Hence $x=(a, b) \in A \times C$. Therefore $(A \times B) \subseteq(A \times C)$.
3. Carefully define each of the following terms:
a. relation

A relation from set A to set B is a subset of $A \times B$.
b. symmetric (relation)

A relation R is symmetric if whenever $(a, b) \in R$, we must have $(b, a) \in R$.
c. equivalence relation

A relation is an equivalence relation if it is reflexive, symmetric, and transitive.
d. partial order

A relation is a partial order if it is reflexive, antisymmetric, and transitive.
e. surjective

A function $f: A \rightarrow B$ is surjective if for every $b \in B$ there is at least one $a \in A$ such that $f(a)=b$.
4. Consider the relation R on \mathbb{Z} given by $a R b \Leftrightarrow|a-b| \leq 1$. Prove or disprove that R is transitive.
False. We have $3 R 2$ since $|3-2| \leq 1$. We have $2 R 1$ since $|2-1| \leq 1$. But $3 \not R 1$ since $|3-1|>1$.
5. Find the general solution to the recurrence relation $a_{n}=-a_{n-1}+6 a_{n-2}$.

This relation has characteristic equation $r^{2}=-r+6$, which rearranges as $r^{2}+r-6=0$, and factors as $(r+3)(r-2)=0$. There are two roots, -3 and 2 , so the general solution is $a_{n}=A(-3)^{n}+B(2)^{n}$.

